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Abstract. A particle motion in a 2D periodic potential with the symmetry such that a particular
motion can be restricted on thex-axis, subject to the external periodic force in thex-direction, is
studied. It is found that by changing the amplitude of the external force, the 1D diffusive motion in
thex-direction undergoes the instability at an amplitude, above which the diffusive motion in the
y-direction, showing on–off intermittency, is observed. We call iton–off diffusion. By introducing
a simple mapping model, the diffusion coefficient in they-direction is found to take the scaling
form D⊥ = λ

p
⊥h(λ

−q
⊥ L) slightly above the instability point wherep ' 1.42 andq ' 1.95.

λ⊥(> 0) andL, respectively, are the transverse Lyapunov exponent evaluating the magnitude of
instability and its fluctuation in they-direction. The scaling functionh(z) takes the asymptotic
form,h(z) = const. for 0< z� 1 and∝ zα (α ' 0.38) for z� 1.

1. Introduction

Diffusion is not specific to systems under the influence of external random forces such as
the Brownian motion but is also observed in chaotic dynamical systems, provided that the
systems have appropriate spatial translational symmetry. The diffusion constant is determined
by the autocorrelation function of the particle velocity. The mixing property, which is one
of the important characteristics of chaos, can ensure a non-vanishing diffusion coefficient in
chaotic systems. The diffusion in chaotic systems is called thedeterministic diffusionor the
chaos-induced diffusion[1–5], and many studies have so far been reported.

Several years ago, Geiselet al reported the possibility of the existence of the transition
between 1D and 2D diffusions in Hamiltonian systems. This is quite an interesting phenomenon
in transport theory [6, 7].

On the other hand, many studies have recently been reported on on–off intermittency which
is a phenomenon typically observed when a particular chaotic motion in a coupled oscillator
system in a wide sense undergoes the instability [8]. On–off intermittency has been observed
not only in numerical models [9–11] but also in laboratory experiments [12–16]. Recently,
Ott and Sommerer proposed a new dissipative dynamical model showing on–off intermittency
[17]. In their model, on–off intermittency is observed when a 1D particular motion loses its
stability and 2D motion sets in.

Furthermore, Lai and Grebogi [18] extended the Ott–Sommerer model in such a way that
two equivalent subspaces showed physically equivalent 1D particular motion. Namely, this
model has two symmetric invariant subspaces. As the parameter of a system changes, the
largest Lyapunov exponent transverse to the invariant subspaces changes its sign. When the
transverse Lyapunov exponent is positive, the state point in the vicinity of one of the invariant
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subspaces jumps into the other invariant subspace, exhibiting on–off intermittency. This is
calledtwo-state on–off intermittency.

In this paper we give a new bifurcation phenomenon leading to the 2D diffusive motion as a
result of the instability of 1D diffusive motion, exhibiting on–off intermittent characterization.
This paper is constructed as follows. In section 2, proposing a new dynamical model, we report
a new bifurcation showing on–off intermittency associated with the transition between 1D and
2D diffusions. This will be calledon–off diffusion. In section 3, we introduce a mapping model
in order to discuss the critical statistics of on–off diffusion and we will find a new scaling law
just after the onset of on–off diffusion. The summary and concluding remarks are given in
section 4 and a short review of on–off intermittency is added in the appendix.

2. On–off diffusion

2.1. Transition between 1D and 2D diffusions

We consider a dissipative dynamical system where a particle moves under the influence of
a 2D potentialU(x) and is subject to a periodic forcing in thex-direction. The equation of
motion is written as

ẍ(t) = −γ ẋ(t)−∇U(x(t)) + f sin(�t)ex (1)

wherex(t) = (x(t), y(t)) denotes the position of the particle at timet andγ is the friction
coefficient. f and� are, respectively, the amplitude and the frequency of the periodic
external force applied in thex-direction withex being the corresponding unit vector. We
assume that the potential is a periodic function of period 1 in both thex- andy-directions (i.e.
U(x + 1, y) = U(x, y + 1) = U(x, y)) and satisfies

∂U(x, y)

∂y

∣∣∣∣
y=N
= 0 N = 0,±1,±2, . . . (2)

for an arbitraryx-value.
Due to the translational symmetry of the potential and the property (2), the equation of

motion admits a particular solutionx = x0 = (x0(t), N) wherex0(t) obeys

ẍ0 = −γ ẋ0 − ∂U(x0, N)

∂x0
+ f sin(�t) (3)

andN is an arbitrary constant integer. This solution is equal to the motion on the 3D invariant
manifold in the 5D phase space spanned by(x, ẋ, y, ẏ, t). It displays a 1D motion restricted
on thex-axis in the real space. To examine the trajectory instability, the linear stability analysis
of (3) will be performed by putting

x(t) = x0(t) + δx(t) ẋ(t) = ẋ0(t) + δẋ(t). (4)

Let us define the exponent

λ‖ = lim
t→∞

1

t
log

ρ‖(t)
ρ‖(0)

(5)

whereρ‖(t) ≡ (δx(t)2 + δẋ(t)2)1/2. The exponentλ‖ is identical to thelargest Lyapunov
exponentof the 1D motion (the particular solution) in thex-direction, being negative and
positive, respectively, for periodic and chaotic motions.

We hereafter consider the caseλ‖ > 0, where the particle in a particular motion displays
a chaotic motion. If the particle jumps over potential valleys, the 1D diffusion can exist since
U(x,N) is periodic with respect tox. The diffusion coefficientD‖ is given by

σ 2
‖ (t) ≡ 〈(x0(s + t)− x0(s))

2〉s = 2D‖t (6)
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for t → ∞, where〈h(s)〉s denotes the long time average limT→∞ T −1
∫ T

0 h(s) ds. In this
paper, particular attention is paid when no drift motion is present.

The infinitesimal perturbation (y, ẏ) transverse to the invariant manifold is examined with

ÿ = −γ ẏ − ∂
2U(x0(t), y)

∂y2

∣∣∣∣
y=0

y (7)

wherex0(t) is obtained by (3).
The stability of the variation in the transverse direction to the invariant manifold is

examined with the distance from the particular motionρ⊥(t) ≡ (y(t)2 + ẏ(t)2)1/2. The
transverse Lyapunov exponentλ⊥ defined by

λ⊥ = lim
t→∞

1

t
log

ρ⊥(t)
ρ⊥(0)

(8)

displays the growth rate of the distance from the particular motion in the transverse direction.
If λ⊥ > 0, the 1D motion is unstable and a spatially 2D motion is eventually observed. The
local transverse expansion rate introduced by3⊥(t) ≡ ρ̇⊥(t)/ρ⊥(t), displays a fluctuation
around the mean valueλ⊥. The fluctuationR⊥(t) ≡ 3⊥(t) − λ⊥ is caused by the chaotic
motion on the invariant manifold corresponding to the 1D motion and its intensity is given by

L =
∫ ∞

0
〈R⊥(t + s)R⊥(s)〉s dt. (9)

Since the potential is periodic in they-direction, we expect that the instability in they-direction
leads to a large-scale motion associated with the diffusion. The diffusion coefficientD⊥ in the
y-direction is defined via

σ 2
⊥(t) ≡ 〈(y(t + s)− y(s))2〉s = 2D⊥t (10)

for t →∞. Therefore, the diffusion coefficient is given by

D⊥ =
∫ ∞

0
〈ẏ(t + s)ẏ(s)〉s dt. (11)

Needless to say, when the 1D motion is stable,D⊥ vanishes.

2.2. Onset of on–off diffusion

As a concrete model, we take the potential

U(x, y) = − a
π

cos2(πx) cos2(πy) a > 0. (12)

This potential satisfies all the properties given above (figure 1).
In the numerical simulation, parameters are fixed asγ = 0.06,a = 1.6,� = 1.0 and the

value of the amplitudef is changed. We find the transition pointsfc1 ∼ 1.7 andfc2 ∼ 4.0.
For f = 4.1, we observe the 1D diffusive motion. Forf = 3.7, we findλ‖ > 0 andλ⊥ is
slightly positive which implies the particular motion is unstable, and therefore the transversal
motion occurs (figure 2). The diffusion coefficient in they-direction is quite small compared
with that in thex-direction (figure 3). The velocitẏy turns out to display an intermittency.
We calculate the probability distributionP(|ẏ|), the power spectrumI (ω) and the laminar
duration distributionQ(τ) for the intermittent variablėy. Numerical results show the power
law formP(|ẏ|) ∼ |ẏ|−1+ξ , (|ẏ| � 1) whereξ is small,I (ω) ∼ ω−1/2 in the low-frequency
region, andQ(τ) ∼ τ−3/2 in an intermediate region ofτ as shown in figure 4. These results
are in agreement with the well known statistics of on–off intermittency (appendix). For that
reason, this diffusion in they-direction generated via on–off intermittency is called ‘on–off
diffusion’.
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Figure 1. The potentialU(x, y) has spatial translational symmetry in thex- andy-directions.
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Figure 2. On–off diffusion on thex–y plane with the parameter valuef = 3.7. Time series oḟy
plotted in the enlargement displays on–off intermittency.

3. A discrete mapping model of on–off diffusion and statistical analysis

Since the differential equation system (1) has many windows in the parameter space the critical
region associated with the onset of on–off diffusion is quite narrow. Therefore, it is difficult
to analyse statistical properties near the transition point separating regions showing 1D and
2D diffusions. In order to study the critical dynamics, we propose a more simplified model.
Focusing on the motion in they-direction which displays on–off diffusion, we introduce a 1D
discrete mapping system that keeps the property of on–off diffusion.



On–off diffusion 1561

0 10000 20000

0

1

[×10+6]

0 10000 20000

0

1000

2000

t

σ2
||

f=3.7

D||=21.231

t

σ2
⊥

D⊥=0.0482

Figure 3. Variance in thex- and y-direction for f = 3.7 with the diffusion coefficient as,
respectively,D‖ = 21.231 andD⊥ = 0.0482.

The particle position in they-direction at time stepn = 0, 1, 2, . . . is denoted byYn which
is divided into the cell numberNn and the positionηn in the cell, (|ηn| < 1

2) i.e.,Yn = Nn +ηn.
Noting that the statistical property of on–off intermittency is similar to that of the type III
intermittency [19], we employ the discrete system

Yn+1 = F(Yn,3n) = Nn + f (ηn,3n) f (η,3) ≡ e3η + 4η3. (13)

The mapping functionF(Y,3) is a periodic function,F(Y + 1,3) = F(Y,3) and an
antisymmetry relationf (−η,3) = −f (η,3) is assumed. The last property reflects the
inversion symmetry of the potential in they-direction (figure 5). The stability of fixed points
(η = 0) is determined by the transverse Lyapunov exponentλ⊥ which is the average of the local
transverse expansion rate3n. 3n is decomposed into3n = λ⊥+Rn, whereRn is the fluctuation
correlated by the chaotic motion in thex-direction. The inequality3n < 0 (3n > 0) means
the fixed point is momentarily stable (unstable). For simplicity, we assume the temporal
fluctuationRn is a Gaussian white noise with the statistics〈Rn〉 = 0 and〈RnRn′ 〉 = 2Lδnn′ .

The fluctuation of3n may cause an intermittency in the cell. Ifλ⊥ < 0, the particle
reaches one of the fixed pointsη = 0, (Y = N) via a transient intermittency. This means the
particle eventually displays a chaotic motion only in thex-direction. Ifλ⊥ > 0, fixed points
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Figure 4. Laminar duration distribution oḟy for f = 3.7. The broken line indicates the theoretical
resultQ(τ) ∼ τ−3/2.
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Figure 5. The mapping functionF(ηn,3n) for 3n = −0.5 (broken curve) and 0.5 (full curve).
Fixed pointsYn = 0,±1,±2 . . . are momentarily stable (unstable) with3n < 0 (3n > 0).

are unstable, which corresponds to the onset of the 2D motion in the model in the preceding
section. This fact implies that the particle moves from cell to cell in an irregular way (the onset
of diffusion).

Equation (13) can be uniquely decomposed into the following two dynamics;

Nn+1 = Nn + J (ηn,3n) (14)

ηn+1 = g(ηn,3n) (15)
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whereJ (ηn,3n) ≡ [f (ηn,3n) ± 1
2] (Yn ≷ 0), [Z] being the nearest integer ofZ, which is

equal to the jumping number in a unit time step andg(ηn,3n) = f (ηn,3n) − J (ηn,3n).
Now we define the probability distribution forηn,

Pn(η) ≡ 〈〈δ(ηn − η)〉〉 (16)

where〈〈· · ·〉〉 is the average over both the initial valueη0 and the fluctuationsR0, R1, . . . , Rn−1.
It is easy to observe that the probability distribution obeys the Frobenius–Perron equation

Pn+1(η) =
∫ ∞
−∞

dR
e−R

2/4L

√
4πL

∫ 1
2

− 1
2

dζ δ(g(ζ,3)− η)Pn(ζ )

=
∑
j

∫ ∞
−∞

dR
e−R

2/4L

√
4πL

Pn(η̃j )

|g′(η̃j ,3)| ≡ H(η)Pn(η) (17)

whereg′(η,3) ≡ ∂g(η,3)/∂η, and the summation is taken over allη̃j ’s which satisfy
g(η̃j ,3) = η. A slight calculation shows that the steady state distributionP∗(η)(=
H(η)P∗(η)) satisfies

P∗(η) = C|η|−1+λ⊥/L (18)

for smallη, whereC is a constant.
Numerical calculation is carried out by settingλ⊥ = 10−4 andL = 10−2. We observed

that the probability distribution for the distanceη takes a power lawP∗(η) ∼ |η|−1+ξ and that
ξ is well approximated byξ = λ⊥/L for smallη. By numerically solving (14) and (15), it is
also found that the power spectrum takesI (ω) ∼ ω−1/2 in a low-frequency region, and that
the laminar duration distributionQ(τ) takesQ(τ) ∼ τ−3/2. These statistical features are in
agreement with those of on–off intermittency.

Numerically solving (14) and (15), we calculated the dispersion

σ 2
n = 〈〈(Nn −N0)

2〉〉

=
n−1∑
i=0

n−1∑
j=0

〈〈J (ηi, Ri)J (ηj , Rj )〉〉. (19)

We obtained that it asymptotically takesσ 2
n ' 2D⊥n for largen. For smallλ⊥ andL that

satisfiesλ⊥ 6 L, the transverse diffusion coefficientD⊥ turns out to have the scaling form

D⊥(λ⊥, L) = λp⊥h(λ−q⊥ L) (20)

wherep ' 1.42,q ' 1.95. h(z) is the scaling function with the asymptotic forms

h(z) ∼
{

const. (0< z� 1)

zα (z� 1)
(21)

whereα ' 0.38 (figure 6).

4. Summary and concluding remarks

In this study, we extended the Lai–Grebogi model for two-state on–off intermittency in such
a way that the system exhibits aninfinite-state on–off intermittencyby utilizing the periodic
potential. The periodic property of the potential produces the possibility of the diffusive
behaviours of the particle.

We studied the transition between 1D and 2D diffusions by changing the intensity of the
external force. Forλ‖ > 0 andλ⊥ < 0, a 1D diffusion in thex-direction is observed. For
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Figure 6. Scaling functionh(z) (z = λ−1.95
⊥ L) is plotted with various parameter values ofλ⊥.

slightly positiveλ⊥, the particular motion becomes weakly unstable, and a diffusion triggered
by on–off intermittency in a direction perpendicular to the external force is observed. This
paper is the first report of such a new bifurcation phenomenon and we called the diffusive
motion associated with on–off intermittencyon–off diffusion. When a strong burst occurs near
one of the invariant manifolds (x = x0(t), y = 0,±1,±2, . . . ; ẏ = 0) with the sufficient
energy for jump over the potential valley, the particle moves onto another invariant manifold.
This process is repeated in an irregular manner, and the particle starts to itinerate among an
infinite number of invariant manifolds. This is the origin of on–off diffusion.

Forλ‖ > 0 andλ⊥ < 0, the present system has infinitely many attractors where a particle
shows 1D diffusion restricted in thex-direction. In the Lai–Grebogi model for parameter
values where two-state on–off intermittency is not observed, there are points which belong to
the basin of one attractor near any point in the basin of the other attractor. Such a complex
basin structure is calledintermingled. In this connection it is expected that the present system
also have the intermingled basin structures forλ‖ > 0 andλ⊥ < 0.

The present potential is periodic not only in thex- and y-directions, but also in the
x ′(≡ x + y)- andy ′(≡ x − y)-directions. If the external force is applied in thex ′-direction,
changing its intensity, we may expect the observation of on–off diffusion discussed above. We
carried out numerical integration in such a case for various parameter values. However, when
a 1D periodic motion in thex ′-direction loses its stability, we always observed a 2D diffusive
motion both in thex ′- andy ′-directions. Namely, the instability of the 1D periodic motion
always causes a simultaneous onset of diffusions in bothx ′- andy ′-directions and we have
not observed a 1D diffusive motion in thex ′-direction. This fact is quite different from the
situation studied in this paper. This may be related to the fact that the maximum regions of the
potential where the particle showing 1D motion passes through are quite different from each
other in the two cases.
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Furthermore, to estimate the dependence of the diffusion coefficientD⊥ on bothλ⊥ andL
after the instability point, we introduced a simple mapping model exhibiting the same statistical
features as on–off intermittency. We analysed the details of the statistics of the diffusion after
the onset of on–off diffusion, and found a scaling law for the diffusion coefficient with respect
to the magnitude of the instabilityλ⊥ and the fluctuation intensity of the local transverse
expansion rate.

In this paper, we used a potential which is periodic in both thex- andy-directions and
on–off intermittency causes in they-direction. Therefore, the transition separates the 1D and
2D diffusive behaviours. However, if the potentialU(x, y) has a form such that the particle is
always located in a certain finite region in thex-direction and is periodic only in they-direction,
on–off diffusion in they-direction can be also observed as far as the 1D chaotic motion in the
x-direction undergoes the instability. In this sense, the periodic property of the potential in the
x-direction is not necessary for the observation of on–off diffusion in they-direction.

Finally, it should be noted that on–off diffusion is observed not in a specific model, but
is quite a universal phenomenon as far as the potential has a certain kind of symmetry. We
expect that the on–off diffusion can be observed in various systems both experimentally in real
experiments and numerically in other mathematical models.

Appendix. On–off intermittency (Intermittency caused by chaotic modulation)

Let us consider a complex dynamical system, where the state variablesX andv obey

Ẋ(t) = F (X, v) v̇(t) = G(X, v). (A.1)

If G has an antisymmetric propertyG(X,−v) = −G(X, v), equation (A.1) has a particular
motion

Ẋ0(t) = F (X0, ) v0(t) = . (A.2)

Then the subspace corresponding to the motion is called theinvariant manifold.
We examine the stability of the motion on the invariant manifold occupied by the motion

given by equation (A.2) with the two exponents

λ‖ ≡ lim
t→∞

1

t
log
|δX(t)|
|δX(0)| λ⊥ ≡ lim

t→∞
1

t
log
|δv(t)|
|δv(0)| . (A.3)

They are given by two linearized equations forδX(t) and δv(t), whereX(t) = X0(t) +
δX(t), v(t) = δv(t). The exponentλ‖ is identical to the largest Lyapunov exponent of the
particular motion (A.2), being negative for periodic motion and positive for chaotic motion. The
exponentλ⊥ called thetransverse Lyapunov exponentis relevant to the stability of the particular
motion (equation (A.2)) with respect to perturbation vector transverse to the manifold. Now
we assume thatλ⊥ changes its sign from negative to positive values, the particular motion
keeping chaotic motion (λ‖ > 0). If the local expansion rate has a strong fluctuation, the
chaotic orbit spends long stretches of time near the invariant manifold and every once in a
while, it experiences a burst, in which it moves far from the invariant manifold. The repeat of
this process shows highly intermittent behaviour. This is calledon–off intermittency.

Statistical features of on–off intermittency are summarized as follows. The probability
density for the intermittency variableρ(t) (≡ |v(t)|, the distance transverse to the invariant
manifold ) takes a power law formP∗(ρ) ∼ ρ−1+ξ for smallξ [20], where the exponentξ is
proportional to the transverse Lyapunov exponent. Furthermore the power spectrum takes a
power law formI (ω) ∼ ω−1/2 in a low-frequency region [20,21], and the distribution function
for the duration of a laminar motionQ(τ) takes a power law dependenceQ(τ) ∼ τ−3/2
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in an intermediate region ofτ [22]. These statistical features are caused by self-similar
characteristics of on–off intermittency.

These statistical features can be described by a simple stochastic model [20]. A time
evolution ofρ(t) is assumed to be given, by taking into account the nonlinear effect, as

ρ̇(t) = (λ⊥ +R(t))ρ(t)− βρ(t)3 (A.4)

whereβ is positive constant. This is identical to the so-called multiplicative noise model. The
local transverse expansion rate is replaced by3⊥(t) ≡ λ⊥ + R(t), the fluctuationR(t) being
assumed to be a Gaussian white noise with〈R(t)〉 = 0, 〈R(t)R(0)〉 = 2Lδ(t). Then the
Fokker–Plank equation is written as

∂P (ρ, t)

∂t
= L ∂

∂ρ

[
ρ2P∗(ρ)

∂

∂ρ

[
P(ρ, t)

P∗(ρ)

]]
(A.5)

where P∗(ρ) ∼ ρ−1+ξe−βρ
2/2L is the steady-state distribution. It brings a power law

P∗(ρ) ∼ ρ−1+ξ , ξ = λ⊥/L for smallρ [20]. We can derive from equation (A.5) the asymptotic
form of the power spectrumI (ω) ∼ ω−1/2 in the low-frequency region [20, 21].

Recently, Miyazaki and Hata proposed a solvable mapping model of on–off intermittency
[23, 24]. They rigorously found the above asymptotic forms with the solvable model.
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